VTube-LASER End Point Deviations

From ATTWiki
Revision as of 01:24, 2 December 2016 by Mcone (Talk | contribs)

Jump to: navigation, search

Vtube-laser logo 1.96.png This page describes how to find the END POINT deviations.

Vtl screen hd scanner without logo.png


Contents

Three Main End Point Deviations

There are three main end point deviation values calculated during an alignment of the MEASURED to the MASTER tube.

Vtl three end point deviations.png

END LENGTH Deviations

The end length deviations are found at the top of the Inspection menu.

These deviations show you how much to trim a part to make it fit within the current alignment better.

Vtl end length deviations.png

AFTER-TRIM Deviations

These are found in the first T1 value and the last T2 value in the Tangents grid.

These deviations show the expected radial deviation if the tube were trimmed.

Vtl after-trim deviations.png




Typical Industry Tangent Point Tolerances

In working with thousands of customers over the past few decades, we've seen some trends in accepted envelope deviation tolerances. Here are what we commonly see:

Aerospace and Automative Fluid Lines

Diameter Range

Envelope Tolerance

12.7 mm (0.5 inch) diameter tubes or less

+/- 1 mm (0.039 inches)

Greater than 12.7 mm (0.5 inch)

+/- 2 mm (0.078 inches)

Automotive Exhaust Pipes

Diameter Range

Envelope Tolerance

50 mm to 76 mm

From +/- 2 mm to +/- 3 mm

76 mm to 102 mm

+/- 3 mm

Larger then 102 mm

+/- 3 mm or greater

Shipbuilding

Diameter Range

Envelope Tolerance

All Diameters

+/- 6 mm


HVAC

Diameter Range

Envelope Tolerance

All Diameters

+/- 2 to +/- 3 mm

Structural Tubes (Frames)

Diameter Range

Envelope Tolerance

All Diameters

+/- 2 to +/- 3 mm

Tighter Tolerances

Sometimes customers will required +/-0.75 mm - but this is very rare. We've never seen tube shapes that must be qualified with a deviation tolerance of less than +/- 0.75 mm.

Aerospace envelope tolerance.png
Exhaust envelope tolerance.png
Shipbuilding envelope tolerance.png

Other Pages